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Introduction

In order to understand the basic physics of heat pumps, it is necessary to first have a 
clear and correct understanding of the basic concepts involved. This is all the more 
important as some of the key words, though familiar from daily life, are often used 
with a variable and hence imprecise meaning. We thus begin by carefully establishing 
the necessary key concepts. They are then used to describe the operation of a heat 
pump in an abstract way that captures just the essentials and thus is independent of 
whatever technology might be employed in practice. Some relevant basic laws of 
physics are then introduced, and limitations on heat pump performance based on these 
laws are derived. Finally, we briefly consider the performance of practical heat pumps.

Basic Concepts

Energy is for our purposes the capacity or potential to perform a task. An example is 
the energy of the working fluid in a heat pump after it is compressed.

Internal energy is the intrinsic energy a material possesses due to the motion of its 
atoms relative to each other and to the interactions of the atoms with each other. An 
example is the energy of the working fluid in a heat pump.

Heat is the transfer of energy between a system and its surroundings due to a 
temperature difference between the two. An example is the energy provided by a heat 
pump to a house. It is important to note that “heat” is not the same as “temperature,” 
though the two words are often used interchangeably. Also note that heat, unlike 
internal energy, is energy in transit and thus is not something that a system can possess. 
For this reason, one should not talk about the heat in a system, as if it resides there. One 
may, however, and often will need to talk about the internal energy of a system.

Work is the transfer of energy between a system and its surroundings due to other 
than a temperature difference between the two. An example is the work done by a 
piston as it compresses the working fluid in a heat pump. Like heat, work is energy in 
transit and thus is not something that a system can possess.

Temperature is for our purposes what is measured with a thermometer. But here we 
run into some problems: (1) There are many different kinds of thermometers, and their 
readings generally disagree. Is there any kind that is fundamental and so can be used to 
do basic physics? The answer, fortunately, is yes. It uses the pressure of a gas confined 
in a fixed volume to tell us the temperature: Higher pressure means higher 
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temperature, and lower pressure means lower temperature. (2) There are two common 
temperature scales, Fahrenheit and Celsius, but their definitions are arbitrary and do 
not reflect any basic characteristic of nature. Also, there is something odd about them. 
Suppose that the temperatures of bodies A and B are measured with a Fahrenheit 
thermometer, and it is found that the temperature of B is twice that of A. If the 
temperatures are now measured with a Celsius thermometer, this will no longer be 
found true. But suppose instead that the lengths of rods A and B are measured with an 
inch ruler, and it is found that the length of B is twice that of A. If the lengths are now 
measured with, say, a centimeter ruler, this will still be found to be true.

The defects in the common temperature scales are remedied in the “absolute” 
temperature scales. In them, the zero of temperature, that is, absolute zero, 
corresponds to zero pressure, surely a fundamental state. Above that, one can use 
degrees of the same size as on the Fahrenheit scale, thus producing the Rankine scale, 
or of the same size as on the Celsius scale, yielding the Kelvin scale. Since absolute zero 
corresponds to –459.67 on the Fahrenheit scale, the temperature in Rankine (R) is 
obtained by adding 459.67 to the temperature in Fahrenheit. Similarly, the temperature 
in Kelvin (K) is obtained by adding 273.15 to the temperature in Celsius.

The Heat Pump Reduced to Essentials

To understand the basic physics of the heat pump, we must focus on its essential flows 
of energy. The schematic diagram below shows these flows in a way that will facilitate 
analysis. The system of primary interest is the working fluid of the heat pump,
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represented by the circle in the middle of the diagram. The cold environment outside 
the house is represented by the box at the bottom, and the absolute temperature of that 
environment is denoted by Tcold. The warm environment inside the house is
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represented by the box at the top, and the absolute temperature of that environment is 
denoted by Twarm. Heat flows from and to these environments are denoted by Qcold 
and Qwarm, respectively. The work required to operate the heat pump is denoted by W.
As the device operates in cycles, the heat flows and work should be understood as 
referring to one cycle. Let us now see what we can learn about our heat pump from 
some basic physics.

What the First Law of Thermodynamics Tells Us About a Heat Pump

According to the first law, the internal energy of a system can only be altered by the 
exchange of energy with its surroundings, that is, by heat Q or work W, and so we can 
write

Change in Internal Energy = Q + W.

Heat flow to the system must be regarded as positive, while flow from the system is 
negative. Work performed on the system must be thought of as positive, and work 
performed by the system as negative.

Since the heat pump operates in cycles and at the end of a cycle returns to the same 
state as at the beginning, we can see that the change in internal energy in one cycle 
must be zero. Then, with careful attention to what is positive and what is negative, the 
first law tells us that

0 = Qcold – Qwarm + W,

or

Qwarm = Qcold + W.

The last equation shows us immediately what is so attractive about heat pumps: Part of 
the heat that it delivers is coming from outside the house and is free! Of course, to make 
this happen, you must put work into the heat pump, and the work costs money. This 
brings us to the question of the performance of heat pumps. 

Defining the Performance

What we probably care about most is how much heat the pump provides per dollar 
spent on work. The heat provided is measured by Qwarm, while the cost of the work is 
proportional to W.  This suggests that we measure the performance by the ratio
Qwarm/W.  It will be useful to have a name for this ratio, and the word “efficiency” 
might come to mind. This word has, however, long been associated with heat engines. 
In them, there is a single energy flow into the device, in the form of heat, and two 
energy flows out of the device, one in the form of work and the other in the form of 
heat. The efficiency expresses the work as a fraction of the heat that flows into the 
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device and is necessarily less than 1. In the case of a heat pump, however, there are two 
energy flows into the device, in the forms of heat and work, and a single energy flow 
out of the device, in the form of heat. Thus, we get out more heat than we put in work, 
and this makes our ratio greater than 1. An “efficiency” that is greater than 1 seems 
impossible, given the context in which the term is defined. Worse, it may suggest some 
sort of deep mystery or swindle where there is neither. For these reasons, a different 
name, “coefficient of performance,” is used. Thus, for a heat pump, we can say that the

Coefficient of Performance = Qwarm/W.

What the Second Law of Thermodynamics Tells Us About a Heat Pump

For a given Qwarm, better performance means a smaller W, and the smallest W  that we 
can imagine is none at all, that is, zero. But is that possible? If it were, then heat would 
flow from the cold outside to the warm inside without any help at all. The second law of 
thermodynamics rules this out because it states, in one form, something that you 
probably already know:

      Heat will not spontaneously flow from a lower temperature to a higher temperature.

Nature must then impose an upper limit, but how do we find it?

We begin with the observation that all practical heat pumps have wasteful 
imperfections, such as friction and turbulence in the working fluid. An ideal heat pump 
that lacks these imperfections would, we expect, have better performance and thus 
might help us find the theoretical upper limit to heat pump performance. It will not be a 
practical heat pump because, among other things, it will have to operate very slowly to 
avoid turbulence. Still, its existence will not violate any law of nature, and so we may 
consider it.

An important aspect of the ideal heat pump is that it will be reversible, meaning that it 
can equally well go the other way around its cycle. All energy flows will then be 
reversed but unchanged in magnitude. The device will produce work rather than 
requiring it and so will act as a heat engine. We can then imagine connecting it to a 
hypothetical heat pump so that it supplies the work required to run the pump. If we 
now assume that the hypothetical heat pump has a higher coefficient of performance 
than the heat engine did when acting as an ideal heat pump, we find that the 
combination of the two devices will violate the second law of thermodynamics in the 
form stated above. Therefore, the coefficient of performance of the hypothetical heat 
pump must be less than or equal to that of the ideal one. If the hypothetical pump is 
reversible, it is easy to show that its coefficient must be the same. If it is practical and 
hence not reversible, a more general version of the second law (employing entropy 
considerations) shows that the coefficient of performance of the hypothetical heat 
pump must be less than that of the ideal one. These are very important conclusions, so 
let us state them again:

All ideal reversible heat pumps operating under the same conditions have the same 
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coefficient of performance.

All practical and hence irreversible heat pumps have lower coefficients of performance than 
an ideal reversible heat pump operating under the same conditions.

Now all that we have to do is calculate the coefficient of performance of some ideal 
reversible heat pump and we will have our upper limit for all heat pumps. That is next.

The Carnot Cycle

The Carnot (pronounced “car-no”) cycle was originally devised to study the upper limit 
of the efficiency of a heat engine but will work equally well for a heat pump if we just 
execute the cycle in reverse. We imagine that the working fluid of the pump is a gas of a 
particularly simple sort, an ideal gas. Though no real gas is actually ideal, most gases are 
nearly so under fairly typical conditions. The gas is confined in a cylinder with a 
movable piston, as shown in the diagram below.

gas

When the piston moves up, it compresses the gas and does work on it. When it moves 
down, the reverse happens, and the gas does work on the piston (and whatever is 
connected to it). The piston is insulated so that no heat can flow through it. Any heat 
flow between the gas and its environment then takes place solely through the walls of 
the cylinder, which can be insulated or not as required. When not insulated, the walls 
are held at whatever temperature is necessary, and heat can then flow into or out of the 
gas while its temperature remains fixed at the temperature of the walls or nearly so.

Let us begin our cycle with the piston in its lowermost position. The following four 
steps (which bear careful reading) are then carried out: (1) With the cylinder insulated 
and the gas initially at temperature Tcold, the piston is slowly pushed part way up. This 
requires work, compresses the gas, and causes its temperature to increase to Twarm. (2) 
With the cylinder not insulated but held at the temperature Twarm, the piston is slowly 
pushed to its uppermost position. This requires more work and further compresses the 
gas. The compression causes the temperature of the gas to start to rise above Twarm, but 
this in turn causes heat Qwarm to flow out of the gas, thereby keeping its temperature 
slightly above Twarm. (3) With the cylinder insulated, the piston is slowly pulled part 
way down. The gas does work on the piston and expands as it does so. This causes the 
temperature of the gas to decrease to Tcold. (4) With the cylinder not insulated but held 
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at the temperature Tcold, the piston is slowly pulled down to its lowermost position. 
The gas does more work on the piston and expands further. This causes the 
temperature of the gas to start to decrease below Tcold, but this in turn causes heat 
Qcold to flow into the gas, thereby keeping its temperature slightly below Tcold. At this 
point, we are back to where we started, and the cycle is complete. Work was done on 
the gas when the piston moved up and by the gas when the piston moved down. It is 
not hard to see, however, that during each upward movement, the gas pressure was 
higher than during the counterpart downward movement. Thus, more work was done 
on the gas than by the gas, and so the net effect is that work W was done on the gas.

The cycle just described  shows how a heat pump, though admittedly not a practical 
one, could work. An analysis of the energy flows then yields the following simple but 
very important result:

Qcold = (Tcold/Twarm)Qwarm.

This result, we should be reminded, would be found for any ideal reversible heat pump 
operating between the same temperatures. Let us now make use of it to find the upper 
limit of the coefficient of performance of a heat pump.

The Upper Limit of the Coefficient of Performance

Earlier we learned that the first law of thermodynamics told us that

0 = Qcold – Qwarm + W.

We may rewrite this in the form

W = Qwarm – Qcold,

and then substitute the result given at the end of the previous section for Qcold to 
obtain

W = Qwarm – (Tcold/Twarm)Qwarm = [1 – (Tcold/Twarm)]Qwarm.

This then yields

Qwarm/W = 1/[1 – (Tcold/Twarm)].

But the ratio on the left is the coefficient of performance, and the expression on the 
right is its upper limit, the maximum permitted by nature. Therefore, we can can now 
say that

The upper limit of the coefficient of performance of a heat pump operating between the 
temperatures Tcold and Twarm is 1/[1 – (Tcold/Twarm)].
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We note again that the temperatures must be absolute temperatures.

It may be useful now to see some values for the upper limit of the coefficient of 
performance in various climates. The table below gives these values for the month of 
January in three cities: Saint Louis, Missouri; Des Moines, Iowa; and Minneapolis, 
Minnesota. We assume that the temperature inside the house is 70ºF, corresponding to 
an absolute temperature of about 70 + 460 = 530 R. The heat pump is assumed to extract 
its heat from the air outside the house (an “air-source” heat pump), and for its 
temperature we use the monthly mean air temperature for each city.

___City___         Upper Limit of Coefficient of Performance
Saint Louis 12.0
Des Moines 9.5
Minneapolis 8.1

It should be kept in mind that the performance of a heat pump actually varies as the 
temperature outside a house varies during the day, from day to day, and from season 
to season. Nonetheless, we can draw the useful and correct conclusion from the table  
that the colder the climate, the less well does a heat pump perform. The reason, of 
course, is that it becomes harder and harder to move heat from a lower and lower 
temperature outside the house to the warm temperature inside. This has given rise to 
heat pumps that extract their heat from underground sources (“ground-source” heat 
pumps). The temperature underground below the frost line is roughly 50ºF 
everywhere. For that temperature, we find that the upper limit of the coefficient of 
performance is about 25, surely a great improvement over the values shown in the 
table. Finally, we note that the imperfections, some of them unavoidable, in presently 
available air-source heat pumps might reduce their coefficients of performance to 
something of the order of 4 in a climate like that of Des Moines. Still, even a coefficient 
of performance of 4 means that for each unit of work that goes into the heat pump, 3 
units of free heat from outside the house combine with the 1 unit of work to provide 4 
units of heat to the house.

Further Information and Issues 

The best widely available source of further information is the Internet. A search by the 
author using “heat pump” and the Google search engine produced about 645,000 
references. Some of them would undoubtedly be of interest, particularly in connection 
with very important practical issues not addressed here. Such an issue, for example, is 
the problem that as the temperature outside a house drops, the need for heat rises but 
the performance of a heat pump drops. This means that unless the heat pump is large 
enough, supplementary heating may be needed. But which is better, a large heat pump 
or supplementary heating? And then there is the important but changing issue of 
competing methods of heating. Which is best in a given climate, and what exactly does 
“best” mean?
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